

Course: Security Analysis and Risk Management

Project: Cyber Security 4 ALL(CS4ALL)

Understanding Risks in Cyber Systems

Overview

- Understanding Risks in Cyber Systems
- Fundamental concepts and terms in cybersecurity
- Overview of cybersecurity principles and risk management in cyber systems
- Introduction to threats, vulnerabilities, risks, controls
- Differences and intersections between IT Security, Information Assurance, and Risk Management

Introduction

- Understanding risks in cyber systems is crucial to managing and mitigating potential threats that can affect the security, integrity, and functionality of these systems.
- The risk in cyber system has changed over the years and has become more challenging topic of the day.
- It is important to know the different areas to focus on when evaluating and understanding these risk

Key Areas Cloud Security Issues Containment IoT Vulnerabilities Detection and Analysis **AI/ML** Threats Supply Chain Risks **Emerging Risks** Incident Response and Recovery Reputational Recovery Operational Eradication Risk Assessment and **Risk Evaluation** Types of Risks **Risk Management** Compliance **Preventive Controls** Phishing Financial Common Cyber Threats **Risk Control Measures** Malware **Corrective Controls Detective Controls Insider Threats Mitigation Strategies** Ransomware

CS4ALL

BERSECURITY FOR

Fundamental Concepts and Terms in Cybersecurity

- Cybersecurity: Protecting systems, networks, and data from cyber threats.
- Threat: Potential harm from malicious actions (e.g., malware, hacking).
- Vulnerability: Weakness in a system that can be exploited.
- Risk: Likelihood of a threat exploiting a vulnerability to cause harm.
- Control: Measure to mitigate or manage risks (e.g., firewalls, encryption).

Cybersecurity

- Protects digital assets, including systems, networks, and data, against unauthorized access, attacks, and damage.
- Aims to uphold the Confidentiality, Integrity, and Availability (CIA triad) of information, ensuring data remains protected, accurate, and accessible only to authorized users.
- Encompasses several disciplines, such as threat detection, incident response, risk management, and compliance with industry regulations.

Layered Cybersecurity Defense Model

Threat

Potential harm from malicious actions

Categories:

- External Threats: Such as cybercriminals, hacktivists, and state-sponsored attackers targeting organizations for financial or political gain.
- Internal Threats: Insiders with access to sensitive data who might misuse it, either intentionally (disgruntled employees) or unintentionally (human error).

Types of Threats:

- Malware: Includes viruses, worms, and spyware intended to disrupt, damage, or gain control of systems.
- Social Engineering: Psychological manipulation to gain unauthorized access or information.
- Advanced Persistent Threats (APTs): Prolonged attacks by sophisticated actors, often targeting sensitive government or corporate data.

Vulnerability

Weaknesses in software, hardware, or organizational practices that can be exploited by threats to gain unauthorized access or cause harm.

Common Sources:

- System Flaws: Unpatched software or hardware flaws that make systems susceptible to attacks.
- Weak Authentication: Lack of multi-factor authentication or reliance on weak, easily guessable passwords. Lack of Employee
- Training: Employees unaware of phishing or social engineering tactics increase susceptibility to attacks.

Mitigation: Regular updates, patch management, secure coding practices, and training programs help reduce vulnerabilities.

Risk

The likelihood that a given threat will exploit a vulnerability and impact the organization.

Risk Factors:

- Exposure: The extent to which a system is exposed to potential threats, both internal and external.
- Impact: The severity of potential damage or loss if a vulnerability is exploited (e.g., financial loss, data breach, reputational harm).
- Probability: The chance that a particular threat will exploit a vulnerability within a specified timeframe.

Risk Assessment

Risk Assessment Process

- Identification: Identifying potential risks that could impact the organization.
- Analysis: Evaluating the severity of each risk based on its probability and potential impact.
- Mitigation Planning: Deciding on risk treatment methods such as accepting, transferring, mitigating, or avoiding the risk.

Control

Actions or tools put in place to minimize risks and protect against threats by preventing, detecting, or responding to incidents.

Categories of Controls:

- Preventive: Stop attacks before they happen, using firewalls, strong authentication, and secure configurations.
- Detective: Identify and alert on suspicious activity; examples include log analysis, network monitoring, and IDS/IPS (Intrusion Detection/Prevention Systems).
- Corrective: Restore systems and data after an incident, including backup and disaster recovery plans.
- Deterrent: Discourage attackers by increasing the perceived risk, such as by employing visible security measures.

Cybersecurity Principles

- Confidentiality: Protecting information from unauthorized access.
- Integrity: Ensuring information accuracy and trustworthiness.
- Availability: Ensuring reliable access to information for authorized users.
- Non-repudiation: Ensuring that actions cannot be denied (e.g., digital signatures).
- Authentication: Verifying identity before granting access.

Risk Management in Cyber Systems

- Risk Assessment: Identifying and prioritizing assets and risks.
- Threat Modeling: Understanding potential threats and their impact.
- Risk Mitigation: Implementing controls to minimize risk.
- Continuous Monitoring: Tracking changes in risk status over time.

Differences and Intersections Between Key Areas

- IT Security: Focuses on protecting technology infrastructure.
- Information Assurance: Ensures integrity, availability, and protection of information.
- Risk Management: Identifies, assesses, and mitigates risks across IT and business.

Conclusion

- Cybersecurity Risks: Evolving threats require proactive risk management.
- Foundational Principles: Confidentiality, integrity, and availability are essential.
- Integration: Effective cybersecurity requires combining IT security, information assurance, and risk management.

Questions & answers

Invite questions from the audience.

Resources

List the resources :

- <u>https://www.kaspersky.com/resource-center/definitions/what-is-cyber-security</u>
- <u>https://cybermap.kaspersky.com/</u>
- <u>https://www.cybok.org/media/downloads/CyBOK-version-</u> <u>1.0.pdf</u>

